ASAL MULA KEANEKARAGAMAN SEL EUKARIOTIK

Rabu, 13 Juni 2012

ASAL-MULA KEANEKARAGAMAN EUKARIOTIK
Sel eukariot berukuran lebih besar dibandingkan dengan prokariot. Sebagai contoh, hepatosit, jenis sel utama pada hati hewan tingkat tinggi berdiameter kira-kira 20 sampai 30 pan, dibandingkan dengan diameter bakteri yang berukuran I sampai 2 PM. Tetapi, yang leb ih nyata lagi adalah volume sel eukariot yang mencapai 1000 sampai 10.000 kali lebih besar dari volume bakteri. Volume relatif sel eukariot dan prokariot dapat di­hitung dengan pendekatan rumus volume suatu bulatan (halaman 20). Beberapa sel eukariot berukuran jauh lebih besar dari kisaran ini, contohnya: pada telur ayam yang belum terfertilisasi, hampir semua volumenya yang besar diisi oleh persediaan nutrien bagi per­kembangan embrionya. Beberapa sel eukariot berukuran amat panjang. Contohnya, sel penggerak tertentu dari sistern syaraf manusia, panjangnya dapat melebihi 1 meter.
Ciri yang paling utama ialah, bahwa sel eukariot mempunyai inti sel yang berbentuk baik, yang dikelilingi oleh membran ganda dan oleh struktur internal yang kompleks. Seperti prokariot, sel-sel eukariot dapat membelah secara aseksual, akan tetapi, proses ini ter­jadi dengan cara yang jauh lebih kompleks, yang dikenal sebagai Sel benih orga­nisme eukariot dapat juga melangsungkan konyugasi seksual yang kompleks, yang me­nyangkut pertukaran gen.
Perbedaan menyolok lainnya di antara eukariot dan prokariot adalah bahwa selain inti sel yang terbentuk baik, eukariot mengandung sejumlah organel yang di­kelilingi membran, seperti  dan masing-masing mempunyai peranan spesifik di dalam metabolisme dan aktivitas sehari-hari sel. Sel eukariot mempunyai pembagian kerja yang lebih rumit di antara berbagai struktur internal, masing-masing struktur memegang peranan khusus di dalarn aktivitas sel.
Sel semua hewan dan tumbuhan tingkat yang lebih tinggi dan sel jamur merupakan sel-sel eukariot. Terdapat juga berbagai eukariot bersel tunggal, termasuk berbagai spesies protozoa, diatome, eugenoid, ragi, dan lapang berlendir. Karena golongan ini mempunyai jumlah bahan genetik yang jauh lebih banyak, dan karena organisme ini sering melangsungkan konyugasi seksual yang memungkinkan pertukaran gen, bentuk kehidupan eukariot mampu melakukan diferensiasi dan spesialisasi secara lebih luas dibandingkan dengan prokariot. Jadi, organisme eukariot mempunyai jutaan spesies yang berbeda, dibandingkan dengan spesies prokariot yang hanya beberapa ribu. Sebaliknya, organisme prokariot lebih mampu bertahan terhadap perubahan lingkungannya, dan dapat bere­produksi dengan kecepatan yang lebih tinggi, yang memberinya kemampuan bertahan pada keadaan yang amat tidak menguntungkan.

PROKARIOTA DAN ASAL MULA KEANEKARAGAMAN METABOLISME


PROKARIOTA DAN ASAL MULA KEANEKARAGAMAN
METABOLISME
A.    PROKARIOTA
Sel prokariot merupakan mahluk yang pertama-tama muncul dalam evolusi biologi. Fosilnya masih berbentuk sel yang kita kenal sekarang, tercatat berumur lebih dari tiga ribu juta (3 x 109) tahun, telah ditemukan pada batu tulis kuno di Afrika dan di Australia. Sel eukariot yang muncul mungkin pada ribuan juta tahun setelah prokariot, berukuran lebih besar, lebih kompleks, dan memperlihatkan kisaran ragam dan perbedaan yang lebih luas. Golongan ini merupakan jenis sel yang ditemukan pada semua hewan, tanaman dan jamur bersel banyak (fungsi).
Istilah prokariot diturunkan dari bahasa Yunani yang berarti kacang, biji, atau inti. Prokariot berarti "pra inti," Pada prokariot, senyawa genetik ditempatkan di dalam suatu badan inti atau badan serupa inti yang agak acak dan tidak dikelilingi oleh membran. Sekarang, kita akan menelaah sel prokariot dan eukariot secara lebih terinci.
Prokariot terdiri dari kira-kira 3000 spesies bakteri, termasuk organisme yang umumnya disebut ganggang hijau biru (blue-green algae). Ganggang hijau-biru merupakan suatu keluarga khusus dari bakteri; nama modern yang lebih disukai adalah cyanobacter (cyano = biru). Golongan sianobakteri berbeda dengan golongan lain, dan sering terpisah sendiri, karena golongan ini melangsungkan sistem fotosintesis yang dapat menghasilkan oksigen, menyerupai sistem pada tumbuhan hijau tingkat tinggi.
Walaupun beberapa kelas bakteri lainnya dapat melakukan fotosintesis, aktivitas ini tidak menghasilkan oksigen. Bahkan, kebanyakan spesies bakteri bersifat non-fotosintetis dan memperoleh energi dari pemecah­an zat makanan dari lingkungannya. Terdapat kira-kira 20 famili prokariot, yang dibeda­kan atau diberi nama menurut bentuk, kapasitas gerak, karakteristik pe­warnaan, zat makanan yang disukai, atau produk yang dihasilkan. Beberapa bakteri bersifat patogenik (penyebab penyakit), tetapi banyak yang amat bermanfaat. Di antara prokariot terdapat golongan yang berukuran amat kecil yang biasanya hidup sebagai parasit di dalam organisme lain.
Sel prokariot, walaupun tidak terlihat oleh mata dan tidak kita kenal seperti hewan dan tumbuhan tingkat tinggi, menyusun bagian yang amat penting dari keseluruhan bio­massa bumi. Mungkin tiga-perempat dari semua senyawa hidup di bumi terdiri dari orga nisme mikrosicopis, terutama prokariot. Lebih jauh lagi, prokariot memegang peranan penting di dalam pertukaran biologi dari bahan dan energi di muka bumi. Bakteri foto­sintetik di dalam air tawar dan air laut menangkap energi matahari dan menggunakannya untuk menghasilkan karbohidrat dan bahan selular lainnya, yang kemudian dipergunakan sebagai makanan oleh bentuk kehidupan lain.
Beberapa bakteri dapat melakukan fiksasi molekul nitrogen (N2) dari atmosfir untuk membentuk senyawa nitrogen yang bermanfaat. Jadi, prokariot merupakan awal dari berbagai rantai makanan pada biosfir. Lebih jauh lagi, prokariot juga berpartisipasi sebagai konsumen akhir, karena berbagai bakteri meng­uraikan struktur organik tumbuhan dan hewan yang telah mati, dan mengembalikan produk akhir ini kepada atmosfir, tanah dan lautan. Di sini, senyawa tersebut dipergunakan kembali di dalam daur bioiogi unsur karbon, nitrogen dan oksigen.
Sel prokariot juga sangat penting dalam mempelajari biokimia dan biologi molekuler karena strukturnya yang sederhana, kecepatan dan kemudahan pertumbuhan sel, dan mekanisme yang relatif sederhana di dalam reproduksi dan transmisi informasi genetik. Pada kondisi optimum, bakteri E, colf akan membelah diri setiap 20 sampai 30 menit pada suhu 37°C di dalam medium glukosa sederhana, garam-garam amonium, dan mineral.
Ciri penting lain dari prokariot adalah bahwa golongan ini bereproduksi dengan cara aseksual yang amat sederhana. Organisme ini tumbuh hingga ukurannya berlipat ganda, lalu mem­belah diri menjadi sel anak yang identik. Tiap sel menerima seperangkat (satu "copy") materi genetik (DNA) dari sel induk. Sel prokariot hanya mempunyai satu kromosom, terdiri dari molekul DNA sulur ganda. Lebih jauh lagi, mutan genetik dari prokariot dapat segera diinduksi dan ditumbuhkan. Karena sifat-sifat ini, bakteri telah memberikan kepada kita pengetahuan mengenai dasar-dasar proses molekuler yang terlibat di dalam transmisi informasi genetik.
Escherichia coli, suatu organisme yang tidak berbahaya yang biasanya hidup di dalam saluran usus manusia dan banyak hewan tingkat tinggi lainnya, merupakan prokariot yang paling banyak dipelajari dan mungkin paling banyak dipahami di antara semua jenis sel. Sel E. coli berukuran 2 mm (panjang) dan berdiameter sedikit lebih kecil dari 1 pm. Organisme ini mempunyai dinding pelindung, yaitu sejenis membran sel yang agak rapuh yang dilapisi dinding pelindung tadi, sitoplasma yang dilindungi membran dan badan inti sel yang mengandung molekul tunggal DNA dalam bentuk simpul tidak berujung yang amat panjang, yang seringkali berbentuk lingkaran.
Molekul DNA sel E. coli hampir 1000 kali lebih panjang dari selnya sendiri dan karenanya harus betul­-betul berlipat untuk dapat masuk ke dalam badan inti sel, yang biasanya berukuran lebih kecil dari 1 gm. Seperti semua prokariot, tidak terdapat membran yang mengelilingi materi genetik di dalam E. coli, Selain DNA utama di dalam "inti" (nukleoid), sitoplasma kebanyakan bakteri mengandung potongan DNA kecil berbentuk lingkaran yang disebut plasmid. Kita kemudian akan melihat bahwa bagian ini bersifat terpisah dan merupakan unsur genetik semi-independen yang ternyata membawa perkembangan baru di dalam biokimia dan rekayasa genetika.
Dinding luar sel E. coli dilapisi oleh selongsong atau kapsul yang terbentuk dari se­nyawa berlendir. Dari bagian ini dikeluarkan suatu struktur serupa rambut yang disebut pili; fungsinya belum diketahui sepenuhnya. Strain dari E, coli dan bakteri lain yang bersifat motil juga mempunyai satu atau lebih flagela panjang, yang dapat menggerak­kan bakteri di dalam lingkungan cairnya. Flagela bakteri bersifat lurus, kaku, berbentuk batang melengkung, kira-kira 10 sampai 20 nm melintang (across). Flagela melekat pada suatu struktur pada membran yang menyerupai suatu autotransmisi, yang dapat memutar flagela. Membran sel terdiri dari molekul lipida yang membentuk dua lapisan tipis (bilayer), dengan berbagai protein yang menembus lapisan tersebut. Membran ini bersifat ,rermeabel selektif dan mengandung protein yang dapat melangsungkan pengangkutan nutrien ter­tentu ke dalam sel dan hasil buangan ke luar dari sel. Membran sel kebanyakan prokariot juga mengandung protein penting pembawa elektron, yang dapat mengubah energi oksi­datif menjadi energi kimia ATP. Pada bakteri fotosintetik, membran bagian dalam diturun­kan dari membran plasma yang mengandung klorofil dan pigmen lain penangkap sinar.
Di dalam sitoplasma E. coli terdapat sejumlah unsur granular. Yang paling jelas adalah ribosom yang terlihat padat pada pewarnaan; pada prokariot, berdiameter kira-kira 18 nm. Ribosom yang mengandung asam ribonukleat dan sejumlah molekul protein me­langsungkan sintesa protein sel.
Bahkan pada bakteri sederhana, kita melihat suatu pembagian kerja primitif di dalam sel. Dinding sel merupakan batas terdepan, bersifat sebagai pelindnng, membran sel me­langsungkan pengangkutan nutrien ke dalam dan hasil buangan ke luar, dan juga meng hasilkan energi kimia sebagai ATP. Sitoplasma merupakan tempat reaksi enzimatis yang melibatkan sintesa berbagai komponen sel; ribosom menghasilkan protein; dan badan inti berpartisipasi dalam penyimpanan dan transmisi informasi genetik.
0011




Gambar 1.9 Perbandingan sel prokariot dan eukariot
Walaupun prokariot bersifat relatif sederhana dan berukuran kecil dibandingkan dengan sel eukariot, beberapa diantaranya ternyata mampu melakukan aktivitas yang kompleks. Contohnya, banyak bakteri memperlihatkan fenomena kemotaksis. Golongan ini tertarik kepada dan dapat bergerak menuju senyawa kimia tertentu, terutama nutrien, serta ditolak oleh dan bergerak menjauhi senyawa toksik. Jadi, organisme ini mempunyai sistem sensori primitif yang dapat mengkomunikasikan isyarat ke flagelanya, yang akan mendorong sel menuju atau menjauhi suatu atraktan Golongan ini juga mempunyai daya ingat yang masih primitif.
Sel beberapa spesies prokariot cenderung bergabung menjadi suatu kelompok atau filamen, yang memberikan kesan sebagai organisme multisel primitif, akan tetapi, organis­me multisel yang sejati hanya terdiri dari sel-sel eukariot.

B.     ASAL MULA KEANEKARAGAMAN METABOLISME
Metabolisme adalah proses-proses kimia yang terjadi di dalam tubuh makhluk hidup/sel. Metabolisme disebut juga reaksi enzimatis, karena metabolisme terjadi selalu menggunakan katalisator 
a.       Anabolisme/Asimilasi/Sintesis
Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
1)      Fotosintesis
Arti  fotosintesis adalah proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan).
Yang digunakan dalam proses fetosintesis adalah spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis.
Dalam fotosintesis, dihasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan.
2)      Pigmen Fotosintesis
Fotosintesis hanya berlangsung pada sel yang memiliki pigmen fotosintetik. Di dalam daun terdapat jaringan pagar dan jaringan bunga karang, pada keduanya mengandung kloroplast yang mengandung klorofil / pigmen hijau yang merupakan salah satu pigmen fotosintetik yang mampu menyerap energi cahaya matahari.
Dilihat dari strukturnya, kloroplas terdiri atas membran ganda yang melingkupi ruangan yang berisi cairan yang disebut stroma. Membran tersebut membentak suatu sistem membran tilakoid yang berwujud sebagai suatu bangunan yang disebut kantung tilakoid. Kantung-kantung tilakoid tersebut dapat berlapis-lapis dan membentak apa yang disebut grana Klorofil terdapat pada membran tilakoid dan pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedang pembentukan glukosa sebagai produk akhir fotosintetis berlangsung di stroma.
yaitu proses pembentakan molekul yang kompleks dengan menggunakan energi tinggi.
Contoh :
fotosintesis (asimilasi C)
energy cahaya
6 CO2 + 6 H2O ———————————> C6H1206 + 6 02
klorofil glukosa (energi kimia)
Pada kloroplas terjadi transformasi energi, yaitu dari energi cahaya sebagai energi kinetik berubah menjadi energi kimia sebagai energi potensial, berupa ikatan senyawa organik pada glukosa. Dengan bantuan enzim-enzim, proses tersebut berlangsung cepat dan efisien. Bila dalam suatu reaksi memerlukan energi dalam bentuk panas reaksinya disebut reaksi endergonik. Reaksi semacam itu disebut reaksi endoterm.
b.      Katabolisme (Dissimilasi).
Katabolisme adalah reaksi pemecahan / pembongkaran senyawa kimia kompleks yang mengandung energi tinggi menjadi senyawa sederhana yang mengandung energi lebih rendah. Tujuan utama katabolisme adalah untuk membebaskan energi yang terkandung di dalam senyawa sumber. Bila pembongkaran suatu zat dalam lingkungan cukup oksigen (aerob) disebut proses respirad, bila dalam lingkungan tanpa oksigen (anaerob) disebut fermentasi.

Contoh:
enzim
C6H12O6 + 6 O2 ———————————> 6 CO2 + 6 H2O + 686 KKal.
energi kimia
Saat molekul terurai menjadi molekul yang lebih kecil terjadi pelepasan energi sehingga terbentuk energi panas. Bila pada suatu reaksi dilepaskan energi, reaksinya disebut reaksi eksergonik. Reaksi semacam itu disebut juga reaksi eksoterm.

BUMI PURBAKALA DAN ASAL MULA KEHIDUPAN

BUMI PURBAKALA DAN ASAL MULA KEHIDUPAN

A.    BUMI PURBAKALA
Pembentukan Benua dan Samudera
1.    Benua
Bumi sebagai benda alam pada pada mulanya merupakan benda yang berpijar yang kemudian mendingin. Pada proses ini terbentuklah kerak yang keras yang disebut kulit atau kerak bumi (lithosfer). Pada awalnya lapisan ini sangat labil. Dalam proses pendinginan yang terus berlangsung itu, bumi juga bergerak mengadakan rotasi sehingga kulit yang baru terbentuk itu retak-retak dan bergeser saling menjauh karena seolah-olah kulit yang sudah keras itu mengapung pada bagian bumi sebelah dalamnya yang diperkirakan masih lumer.
Salah satu teori yang mengemukakan tentang terbentuknya benua-benua yang ada di bumi adalah Teori Wegener. Teori ini dikemukakan oleh seorang ahli geografi berkebangsaan Jerman yaitu Wegener pada tahun 1915. Teori Wegener ini disebut juga dengan hipotesis Continental Drift (perkisaran benua). Menurut teori ini, bumi pada 250 juta tahun yang lalu hanya terdiri dari satu benua yang sangat besar, kemudian retak dan bergeser saling menjauhi satu sama lainnya. Akibat pergeseran itu terbentuklah benua-benua Amerika, Asia, Eropa, Afrika, Australia dan  benua Antartika (Hendro dan Yeni, 2004:2.40).
Teori di atas didukung oleh fakta sebagai berikut:
a)    Sepanjang Timur Amerika Selatan ternyata mempunyai bentuk dan lekukan yang kira-kira sama dengan lekukan pada Benua Afrika sebelah Barat.
b)   Lekukan bagian Selatan Benua Australia cocok dengan tonjolan Benua Antartika.
c)    Lekukan Semenanjung India dan Pulau Madagaskar cocok dengan teluk yang terbentuk antara Afrika dengan Antartika.
Kecocokan-kecocokan di atas tidak hanya dari segi geografik, tetapi juga cocok dari segi geologi, yaitu dari jenis dan umur batuan-batuannya yang kira-kira sama.
Peristiwa pergeseran itu berlangsung dalam jutaan tahun. Secara kronologis dapat dirinci sebagai berikut:
a)    Pada 225 juta tahun yang lalu, masih merupakan satu benua yang besar Super Continental yang disebut Pangea.
b)   Pada 200 juta tahun yang lalu Super Contonental pecah menjadi tiga bagian yakni Benua Eropa-Asia, Afrika –Amerika, dan Benua Antartika-Australia.
c)    135 juta tahun yang lalu Afrika dan Amerika mulai memisah di sela-selanya terdapat Samudera Atlantik.
d)   Kemudian, 65 juta tahun yang lalu Australia dan Antartika memisahkan diri dan terjadilah Lautan Indonesia. Pergeseran masih berlangsung sampai saat sekarang.
Harry Hens (dalam Hendro dan Yeni, 2004:2.41) memberikan pendapat tentang pergerakan benua-benua bahwa benua buan hanyut ke sana kemari seperti es terapung, tetapi tertanam kuat pada basalt dasar samudera. Dasar samudera yang baru didesak terus-menerus ke atas dari astenosfer yang panas pada pematang samudera. Pematang samudera merupakan bibir yang terbentuk pada dua sisi celah dalam bumi, tempat bahan panas selubung bumi tertekan ke atas.
Bahan ini kemudian mendingin dan mengeras dalam lithosfer dan menempatkan diri ke tepi lempengan lithosfer pada kedua sisi retakan (kerak samudera). Bahan tersebut bergerak ke bawah darai pematang tengah samudera bersama lempengan melintasi dasar laut dengankecepatan 1,5 sampai 7,5 cm pertahun sebagai perluasan dasar laut. Bagian yang ditumpangi menekuk ke bawah dan tenggelam dalam astenosfer, dipanaskan lagi kemudian pecah lagi, meleleh dan terserap masuk kembali ke bagian dalam bumi. Pergeseran dan retaknya lithosfer kemudian runtuh, menyebabkan terjadinya gempa tektonis. Perluasan dasar laut menyebabkan jarak antara benua bertambah lebar.
Beradasarkan batuan beku yang dirasakan sangat keras, seakan-akan bumi ini merupakan satu kesatuan, namun sebenarnya terdiri dari lempengan tipis dan kaku seperti cangkang telur yang retak-retak.
Di bumi ini ada 6 lempengan utama, yaitu:
a)    Lempengan Amerika, terdiri dari Amerika Utara dan Selatan serat separuh dasar bagian Barat Samudera Atlantik.
b)   Lempeng Afrika, terdiri dari Afrika dan sebagian samudera di sekitarnya.
c)    Lempeng Eurasia, terdiri dari Asia, Eropa dan dasar laut sekitarnya.
d)   Lempeng India, meliputi anak benua itu dan dasar samudera sekitanya.
e)    Lempeng Australia, terdiri dari Australia dan samudera sekitanya.
f)    Lempeng Pasifik, yang mendasari Samudera Pasifik.
Selain lempengan utama di atas, ada pula beberapa jenis lempengan lainnya, yaitu seperti Lempeng Nazca, Lempeng Antarktika serta sejumlah lempeng-lempeng regional lainnya, seperti Lempeng Laut Filipina, Lempeng Cocos, Lempeng Arab, Lempeng Persia, Lempeng Cina, dll.
Lempengan-lempengan tersebut setiap saat mengalami gerakan horizontal yang antara lain menimbulkan pemisahan benua seperti yang dikemukakan oleh Wegener. Akibatnya, Benua Amerika makin jauh dari Benua Afrika, sedangkan Benua Australia karena desakan pematang tengah samudera di sebelah Selatannya mengakibatkan benua itu makin mendekat ke Indonesia.
Di samping gerakan horizontal, terjadi pula gerakan vertikal, yaitu desakan lava yang keluar dari lempengan di Samudera Indonesia yang menyebabkan anak benua India makin terdesak ke Utara. Tapi karena daratan Asia cukup kuat, untu bertahan, maka terjadilah kerutan bumi berupa Pegunugan Himalaya yang tinggi.
Demikian pula akibat pematang tengah di Laut Tengah yang mendesak Eropa ke Utara, maka terjadilah Pegunungan Alpen sebagai kerutan bumi (Plate Tektonic Theory). Secara alami lempengan mengalami perusakan dan pembangunan kembali (putus dan berasambung) yang gerakan lempengnya menjadi gempa tektonik. Prose perusakan dan pembangunan kembali wujudnya adalah patahnya daratan akibat desakana di dasar laut, sehingga di daratan terjadi retakan. Di sepanjang retakan ini muncul pegunungan yang di beberapa tempat lahir gunung berapi seperti pegunungan Rocky Mountain di pantai Barat Amerika. Indonesia merupakan salah satu daerah yang sering diguncang gempa karena letaknya tepat pada pertemuan dua deretan pegunungan lipatan muda Circum Pasific dan Mediterania. Juga merupakan pertemuan tiga lempeng lithosfer, yaitu lempengan India sebelah Barat, lempengan Australia sebelah Barat dan Selatan, dan lempengan Samudera Pasifik sebelah Timur, sehingga daratan Indonesia termasuk tidak tenang.
Penyebab terjadinya pegerakan lempeng yaitu:
a)    Adanya arus konveksi dalam tubuh bumi, yakni: arus konveksi dari batas inti dan mantel yang muncul ke permukaan bumi (thermal plume) dan melalui litosfer dan mantle kembali ke batas inti – mantel.
b)   Adanya panas pada batas inti–mantel yang muncul ke permukaan bumi sebagai hotspot.
Fakta ilmiah di atas sebelumnya telah diterangkan oleh Allah SWT. Dalam sebuah ayat, kita diberitahu bahwa gunung-gunung tidaklah diam sebagaimana yang tampak, akan tetapi mereka terus-menerus bergerak.
Gerakan gunung-gunung ini disebabkan oleh gerakan kerak bumi tempat mereka berada. Kerak bumi ini seperti mengapung di atas lapisan magma yang lebih rapat. Pada awal abad ke-20, untuk pertama kalinya dalam sejarah, seorang ilmuwan Jerman bernama Alfred Wegener mengemukakan bahwa benua-benua pada permukaan bumi menyatu pada masa-masa awal bumi, namun kemudian bergeser ke arah yang berbeda-beda sehingga terpisah ketika mereka bergerak saling menjauhi.
Ada hal sangat penting yang perlu dikemukakan di sini: dalam ayat tersebut Allah telah menyebut tentang gerakan gunung sebagaimana mengapungnya perjalanan awan. Kini, Ilmuwan modern juga menggunakan istilah "continental drift" atau "gerakan mengapung dari benua" untuk gerakan ini (National Geographic Society, Powers of Nature, Washington D.C., 1978, s.12-13).
Menurut penemuan, gunung-gunung muncul sebagai hasil pergerakan dan tumbukan dari lempengan-lempengan raksasa yang membentuk kerak bumi. Ketika dua lempengan bertumbukan, lempengan yang lebih kuat menyelip di bawah lempengan yang satunya, sementara yang di atas melipat dan membentuk dataran tinggi dan gunung. Lapisan bawah bergerak di bawah permukaan dan membentuk perpanjangan yang dalam ke bawah. Ini berarti gunung mempunyai bagian yang menghujam jauh ke bawah yang tak kalah besarnya dengan yang tampak di permukaan bumi.
Dalam tulisan ilmiah, struktur gunung digambarkan sebagai berikut: “pada bagian benua yang lebih tebal, seperti pada jajaran pegunungan, kerak bumi akan terbenam lebih dalam ke dalam lapisan magma” (General Science, Carolyn Sheets, Robert Gardner, Samuel F. Howe; Allyn and Bacon Inc. Newton, Massachusetts, 1985, s. 305)
Dengan kata lain, gunung-gunung menggenggam lempengan-lempengan kerak bumi dengan memanjang ke atas dan ke bawah permukaan bumi pada titik-titik pertemuan lempengan-lempengan ini. Dengan cara ini, mereka memancangkan kerak bumi dan mencegahnya dari terombang-ambing di atas lapisan magma atau di antara lempengan-lempengannya. Singkatnya, kita dapat menyamakan gunung dengan paku yang menjadikan lembaran-lembaran kayu tetap menyatu.
Fungsi pemancangan dari gunung dijelaskan dalam tulisan ilmiah dengan istilah "isostasi". Isostasi bermakna sebagai berikut: “Isostasi: kesetimbangan dalam kerak bumi yang terjaga oleh aliran materi bebatuan di bawah permukaan akibat tekanan gravitasi” (Webster's New Twentieth Century Dictionary, 2. edition "Isostasy", New York, s. 975).
2.    Samudera
Berdasarkan teori Wegener, pergeseran bagian bumi bersifat vertical (geoinklinal) maupun horizontal yang masih berlangsung terus-menerus hingga saat ini. Salah satu akibat dari peristiwa ini adalah terbentunya Pegunungan Himalaya dan terbentuknya Samudera Hindia (Indonesia) yang dalam.
Samudera Pasifik atau Lautan Teduh terbentuk karena massa bumi pada saat masih berupa cairan terlepas dari permukaan bumi. Hal itu terjadi mungkin dipengaruhi oleh rotasi bumi yang menimbulkan gaya sentripetal (gaya menjauhi pusat) dan gaya tarik benda angkasa yang lain (Teori Tidal). Teori terlepasnya bagian dari massa bumi ini lalu membentuk bulan, didukung oleh kenyataan bahwa membesarnya lekukan Pasifik di permukaan bumi ini, bila dihitung kira-kira sama dengan jumlah massa dari bulan. Jenis batuan di bulan pun ternyata serupa dengan batuan Silisium Magnesium (Sima) yang terdapat di dasar Samudera Pasifik.
Teori lain mengatakan bahwa bumi yang semula berupa awan panas, mencair dan bertemperatur tinggi, kemudian berangsur-angsur mendingin membentuk bumi purba yang berupa daratan dan terjadilah benua. Pada saat bumi mendingin, banyak unsur yang berupa gas terutama H2 dan CH4. H2 terlepas dalam bentuk gas, keluar berbentuk lapisan awan tebal melapisi bumi purba, demikian selanjutnya terjadi penguraian karena terkena sinar matahari langsung, sehingga terjadilah lapisan udara atau atmosfer yang sekarang ini.
Bersamaan dengan terbentuknya atmosfer, terjadi pula proses pendinginan udara dan hujan yang sekaligus akan mempercepat pendinginan bumi. Siklus yang berlangsung bermilyaran-milyaran tahun akan membentuk kumpulan air di lekukan-lekukan permukaan bumi. Lautan purba yang pada mulanya diduga hanya 10% dari lautan yang ada pada saat sekarang ini.
Kondensasi yang dialami bumi akibat dari siklus massa udara panas-dingin dan siklus hujan-penguapan menyebabkan jumlah air yang menutupnya makin luas, hingga sekarang ini kira-kira 75% atau 11.375 juta km3 air di permukaan bumi dan disebut lautan atau samudera. Gejala suhu bumi semakin meningkat pada akhir abad ke-20 sehingga menyebabkan mencairnya es di kutub dan salju di puncah-puncak pegunungan yang berakibat semakin meluasnya permukaan laut.
Semula manusia mengira bahwa dasar lautan rata seperti dataran di atas benua luas. Pengukuran dalamnya laut oleh manusia sebelum ditemukan kapal selam, hanya dengan batu yang diikat tali oleh juru batu, dan kemudian diukur dengan alat penduga gema dengan gelombang bunyi. Baru menjelang Perang Dunia II dengan alat-alat elektronik canggih, kapal selam dapat memetakan dasar laut. Dan setelah Perang Dunia II dan dengan semakin lengkapnya saran, maka semakin banyaknya manusia tertarik akan keadaan dasar laut yang memiliki pesona alam dan memberikan harapan terhadap kepentingan kehidupan manusia.
Terdapat gelombang besar, arus kuat, dan gelombang pasang di Laut Tengah dan Samudra Atlantik. Air Laut Tengah memasuki Samudra Atlantik melalui selat Jibraltar. Namun suhu, kadar garam, dan kerapatan air laut di kedua tempat ini tidak berubah karena adanya penghalang yang memisahkan keduanya.
Sifat lautan yang saling bertemu, akan tetapi tidak bercampur satu sama lain ini telah ditemukan oleh para ahli kelautan baru-baru ini. Dikarenakan gaya fisika yang dinamakan "tegangan permukaan", air dari laut-laut yang saling bersebelahan tidak menyatu. Akibat adanya perbedaan masa jenis, tegangan permukaan mencegah lautan dari bercampur satu sama lain, seolah terdapat dinding tipis yang memisahkan mereka (Davis, Richard A., Jr. 1972, Principles of Oceanography, Don Mills, Ontario, Addison-Wesley Publishing, s. 92-93).

B.     ASAL-USUL KEHIDUPAN
1.       Evolusi Kimiawi
Haldane dan Oparin pada tahun 1920-an membuat postulat bahwa kondisi bumi primitif mendukung terjadinya reaksi kimia untuk mensintesis senyawa organic dari senyawa anorganik yang terdapat pada lautan purbakala.
Kemudian pada tahun 1953 Stanley Miller dan H.Urey menguji hipotesis Oparin-Haldane dengan melakukan percobaan menggunakan labu air (sebagai laut primitif) dan atmosfer buatan yang terdiri dari H2O, H2, CH4, dan NH3 (gas-gas yang diyakini para peneliti 1950-an, banyak terdapat di atmosfer purba).


Kilatan listrik juga dibuat untuk meniru kilat pada masa purba. Memasang kondensor, sehingga uap menjadi embun Membuat hujan buatan, sehingga terjadi sirkulasi pada peralatan tersebut. Setelah satu minggu, Miller dan Urey menganalisis isi larutan, ternyata berisi bahan organik seperti beberapa asam amino sebagai bahan penyusun protein pada organisme. Hipotesis Oparin-Haldane terbukti.

2.      Evolusi Biologi
Merupakan proses evolusi dari supramolekul seperti membran sel, ribosom, kromatin, mikrotubulus men-jadi sel prokariotik (sel belum memiliki membran inti/nukleoplasma) kemudian berkembang menjadi sel eukariotik yang memiliki membran inti sel dan organel-organel. Berdasarkan cara mendapatkan makanannya, perjalanan evolusi makhluk hidup adalah heterotrof, autotrof-hederotrof.

3.      Teori-teori Asal Usul Kehidupan
a.       Teori Abiogenesis (Generatio spontanea)
Teori ini dikemukakan oleh Aristoteles, seorang ahli filsafat dan ilmu pengetahuan Yunani kuno. Teori tersebut mengemukakan bahwa makhluk hidup pada mulanya berasal dari benda tak hidup.

b.      Teori Biogenesis
v  Fransesco Redi (1626-1697)
Melakukan percobaan dengan 3 botol yang masing-masing berisi daging. Perlakuan yang diberikan pada botol pertama, yaitu ditutup rapat, botol kedua ditutup dengan kain kasa, dan ketiga dibiarkan terbuka. Hasilnya: setelah beberapa hari kemudian, pada botol tertutup rapat tidak ditemukan belatung, botol yang ditutup kasa ditemukan beberapa belatung, dan botol yang dibiarkan terbuka membusuk dengan banyak belatung di dalamnya. Fenomena tersebut berlawanan dengan teori abiogenesis, karena belatung yang terdapat di dalam botol berpenutup kasa dan tak berpenutup berasal dari telur lalat yang hinggap di atasnya.

v  Lazaro Spalanzani (1729-1799)
Melakukan percobaan seperti Redi akan tetapi bahan yang digunakan bukan daging melainkan kaldu yang dimasukkan ke dalam botol. Perlakuan yang diberikan yaitu kaldu yang dipanaskan dengan botol berpenutup dan tidak. Pada kaldu yang dipanaskan dengan botol tak berpenutup, setelah beberapa hari kemudian diamati dengan mikroskop, tampak mikrobia di dalamnya berkembang pesat, sedangkan pada kaldu yang dipanaskan dalam botol tertutup tampak tidak mengandung mikrobia setelah didiamkan beberapa hari kemudian. Spallanzani menyimpulkan bahwa kehidupan hanya mungkin setelah ada kehidupan sebelumnya, jadi mikroorganisme tersebut telah ada dan tersebar di udara sehingga dapat mengkontaminasi dan tumbuh berkembang dalam air kaldu pada botol tak berpenutup.

v  Louis Pasteur (1822-1895)
Pasteur melakukan percobaan menyempurna-kan percobaan Spallanzani dengan merebus kaldu pada botol dengan penutup gabus rapat kemudian ditembus oleh pipa dengan bentuk leher angsa. Pipa berbentuk leher angsa tersebut bertujuan agar udara tetap masuk ke dalam botol, akan tetapi mikroorganisme pengkontaminan tertahan pada bagian leher botol, sehingga tidak mengkontaminasi kaldu. Setelah diamati beberapa hari, tampak tidak terjadi pertumbuhan mikroorganisme di dalamnya (kaldu jernih). Setelah itu labu tersebut dimiringkan hingga air kaldu menyentuh bagian ujung pipa berbentuk leher angsa. Setelah didiamkan beberapa waktu, air kaldu menjadi keruh, busuk dan banyak mengandung mikroorganisme.
Berdasarkan percobaan-percobaan yang dilakukan Redi, Spallanzani, dan Pasteur maka teori abiogenesis tumbang dan muncullah teori biogenesis “Omne vivum ex ovo, omne ovum ex vivo” (setiap makhluk hidup berasal dari telur, setiap telur berasal dari makhluk hidup).