STRUKTUR PROTEIN

Senin, 18 Juni 2012
STRUKTUR PROTEIN

A.      PROTEIN
Protein (akar kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang sulfur serta fosfor. Protein merupakan salah satu bio-makromolekul yang penting perananya dalam makhluk hidup. Setiap sel dalam tubuh kita mengandung protein, termasuk kulit, tulang, otot, kuku, rambut, air liur, darah, hormon, dan enzim.
Pada sebagian besar jaringan tubuh, protein merupakan komponen terbesar kedua setelah air. Diperkirakan 50% berat kering sel dalam jaringan hati dan daging terdiri dari protein. Sedangkan dalam tenunan daging segar sekitar 20%. Protein ditemukan dalam berbagai jenis bahan makanan, mulai dari kacang-kacangan, biji-bijian, daging unggas, seafood, daging ternak, sampai produk susu. Buah dan sayuran memberikan sedikit protein. Pemilihan sumber protein ini harus bijaksana, karena banyak makanan yang tinggi protein juga tinggi lemak dan kolesterol. Fungsi dari protein itu sendiri secara garis besar dapat dibagi ke dalam dua kelompok besar, yaitu sebagai bahan struktural dan sebagai mesin yang bekerja pada tingkat molekular.
Beberapa protein struktural, fibrous protein, berfungsi sebagai pelindung, sebagai contoh a dan b-keratin yang terdapat pada kulit, rambut, dan kuku. Sedangkan protein struktural lain ada juga yang berfungsi sebagai perekat, seperti kolagen. Protein dapat memerankan fungsi sebagai bahan struktural karena seperti halnya polimer lain, protein memiliki rantai yang panjang dan juga dapat mengalami cross-linking dan lain-lain. Selain itu protein juga dapat berperan sebagai biokatalis untuk reaksi-reaksi kimia dalam sistem makhluk hidup. Makromolekul ini mengendalikan jalur dan waktu metabolisme yang kompleks untuk menjaga kelangsungan hidup suatu organisma.



B.       STRUKTUR PROTEIN
Suatu asam amino-α terdiri atas:
1.      Atom C α. Disebut α karena bersebelahan dengan gugus karboksil (asam).
2.      Atom H yang terikat pada atom C α.
3.      Gugus karboksil yang terikat pada atom C α.
4.      Gugus amino yang terikat pada atom C α.
5.      Gugus R yang juga terikat pada atom C α.
Ada 4 tingkat struktur protein yaitu struktur primer, struktur sekunder, struktur tersier dan struktur kuartener.
1.      Struktur primer
Struktur primer adalah urutan asam-asam amino yang membentuk rantai polipeptida. Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa molekular dengan spektrometri massa.
2.      Struktur sekunder
Struktur sekunder protein bersifat reguler, pola lipatan berulang dari rangka protein. Pada struktur sekunder, protein sudah mengalami interaksi intermolekul, melalui rantai samping asam amino. Analisa defraksi sinar-X merupakan cara yang baik untuk mempelajari struktur sekunder protein serabut.
3.      Struktur tersier
Struktur tersier terbentuk karena terjadinya perlipatan (folding) rantai α-helix, konformasi β, maupun gulungan rambang suatu polipeptida, membentuk globular, yang struktur tiga dimensiny lebih rumit daripada protein tersebut. Interaksi intra molekuler seperti ikatan hidrogen, ikatan ion, van der Waals, hidropobik turut menentukan orientasi struktur 3 dimensi dari protein. Beberapa protein telah dapat ditentukan struktur tersiernya, misalnya hemoglobin, mioglobin, lisozim, ribonulease dan kimo tripsinogen. Sebagai contoh, struktur tersier enzim sering padat, berbentuk globuler.
4.      Struktur kuartener
Beberapa protein tersusun atas lebih dari satu rantai polipeptida. Struktur kuartener menggambarkan subunit-subunit yang berbeda dipak bersama-sama membentuk struktur protein. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener.
Kemantapan struktur kuartener suatu protein oligomer disebabkan oleh interaksi dan ikatan non-kovalen yang lemah antara masing-masing sub bagiannya. Kemampuan untuk berhimpun diri daripada beberapa sub bagian ini merupakan ciri struktur kuartener suatu protein oligomer. Sebagian besar protein oligomer mengalami disidiasi pada pH tinggi atau rendah, juga bila ditempatkan dalam larutan urea atau garam berkonsentrasi tinggi.
Struktur kuartener yang terkenal adalah enzim Rubisco dan insulin. Sebagai contoh adalah molekul hemoglobin manusia yang tersusun atas 4 subunit, yang akan berdisosiasi pada proses pengenceran. Masing-masing sub bagian terdiri atas dua rantai polipeptida, α dan β.
Struktur protein dapat diketahui dengan kristalografi sinar-X atau pun spektroskopi NMR. Namun, kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode sekuensing protein relatif lebih mudah mengungkapkan sekuens asam amino protein. Prediksi struktur protein berusaha meramalkan struktur tiga dimensi protein berdasarkan atas sekuens asam aminonya. Dengan perkataan lain, prediksi tersebut meramalkan struktur sekunder dan struktur tersier berdasarkan atas struktur primer protein.
Metode prediksi struktur protein yang ada saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode pemodelan protein komparatif dan metode pemodelan de novo. Pemodelan protein komparatif (comparative protein modelling) meramalkan struktur suatu protein berdasarkan atas struktur protein lain yang telah diketahui. Salah satu penerapan metode ini adalah homology modelling, yaitu prediksi struktur tersier protein berdasarkan atas kesamaan struktur primer protein. Pemodelan homologi didasarkan atas teori bahwa dua protein yang homolog memiliki struktur yang sangat mirip satu sama lain.
Pada metode ini, struktur suatu protein yang disebut dengan protein target, ditentukan berdasarkan atas struktur protein lain atau protein templet, yang telah diketahui dan memiliki kemiripan sekuens dengan protein target tersebut. Selain itu, penerapan lain pemodelan komparatif ialah protein threading yang didasarkan atas kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang protein threading ialah bahwa struktur protein lebih dikonservasi daripada sekuens protein selama evolusi; daerah-daerah yang penting bagi fungsi protein dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis struktur tiga dimensi protein yang ada. Metode-metode yang tergolong dalam protein threading berusaha menentukan tingkat kompatibilitas tersebut.
Struktur protein dapat ditentukan dari sekuens primernya tanpa membandingkan dengan struktur protein lain berdasarkan pendekatan de novo atau ab initio. Terdapat banyak kemungkinan dalam pendekatan ini, misalnya dengan menirukan proses pelipatan (folding) protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi dinamika molekular), atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur ini cenderung membutuhkan proses komputasi yang intens sehingga saat ini hanya digunakan dalam menentukan struktur protein-protein kecil.

0 komentar:

Posting Komentar