BIOLOGI MOLEKULER DAN SEL EUKARIOTIK

Senin, 18 Juni 2012

BIOLOGI MOLEKULER DAN SEL EUKARIOTIK

A.      BIOLOGI MOLEKULER
Biologi Molekuler merupakan cabang ilmu pengetahuan yang mempelajari hubungan antara struktur dan fungsi molekul-molekul hayati serta kontribusi hubungan tersebut terhadap pelaksanaan dan pengendalian berbagai proses biokimia. Secara lebih ringkas dapat dikatakan bahwa Biologi Molekuler mempelajari dasar-dasar molekuler setiap fenomena hayati. Oleh karena itu, materi kajian utama di dalam ilmu ini adalah makromolekul hayati, khususnya asam nukleat, serta proses pemeliharaan, transmisi, dan ekspresi informasi hayati yang meliputi replikasi, transkripsi, dan translasi.
Meskipun sebagai cabang ilmu pengetahuan tergolong relatif masih baru, Biologi Molekuler telah mengalami perkembangan yang sangat pesat semenjak tiga dasawarsa yang lalu. Perkembangan ini terjadi ketika berbagai sistem biologi, khususnya mekanisme alih informasi hayati, pada bakteri dan bakteriofag dapat diungkapkan. Begitu pula, berkembangnya teknologi DNA rekombinan, atau dikenal juga sebagai rekayasa genetika, pada tahun 1970-an telah memberikan kontribusi yang sangat besar bagi perkembangan Biologi Molekuler. Pada kenyataannya berbagai teknik eksperimental baru yang terkait dengan manipulasi DNA memang menjadi landasan bagi perkembangan ilmu ini.
Biologi Molekuler sebenarnya merupakan ilmu multidisiplin yang melintasi sejumlah disiplin ilmu terutama Biokimia, Biologi Sel, dan Genetika. Akibatnya, seringkali terjadi tumpang tindih di antara materi-materi yang dibahas meskipun seharusnya ada batas-batas yang memisahkannya. Sebagai contoh, reaksi metabolisme yang diatur oleh pengaruh konsentrasi reaktan dan produk adalah materi kajian Biokimia. Namun, apabila reaksi ini dikatalisis oleh sistem enzim yang mengalami perubahan struktur, maka kajiannya termasuk dalam lingkup Biologi Molekuler. Demikian juga, struktur komponen intrasel dipelajari di dalam Biologi Sel, tetapi keterkaitannya dengan struktur dan fungsi molekul kimia di dalam sel merupakan cakupan studi Biologi Molekuler. Komponen dan proses replikasi DNA dipelajari di dalam Genetika, tetapi macam-macam enzim DNA polimerase beserta fungsinya masing-masing dipelajari di dalam Biologi Molekuler.
Beberapa proses hayati yang dibahas di dalam Biologi Molekuler bersifat sirkuler. Untuk mempelajari replikasi DNA, misalnya, kita sebaiknya perlu memahami mekanisme pembelahan sel. Namun sebaliknya, alangkah baiknya apabila pengetahuan tentang replikasi DNA telah dikuasai terlebih dahulu sebelum kita mempelajari pembelahan sel.

B.       SEL EUKARIOTIK
Secara taksonomi eukariot dikelompokkan menjadi empat kingdom, masing-masing hewan (animalia), tumbuhan (plantae), jamur (fungi), dan protista, yang terdiri atas alga dan protozoa. Salah satu ciri sel eukariot adalah adanya organel-organel subseluler dengan fungsi-fungsi metabolisme yang telah terspesialisasi. Tiap organel ini terbungkus dalam suatu membran. Sel eukariot pada umumnya lebih besar daripada sel prokariot. Diameternya berkisar dari 10 hingga 100 µm. Seperti halnya sel prokariot, sel eukariot diselimuti oleh membran plasma. Pada tumbuhan dan kebanyakan fungi serta protista terdapat juga dinding sel yang kuat di sebelah luar membran plasma. Di dalam sitoplasma sel eukariot selain terdapat organel dan ribosom, juga dijumpai adanya serabut-serabut protein yang disebut sitoskeleton. Serabut-serabut yang terutama berfungsi untuk mengatur bentuk dan pergerakan sel ini terdiri atas mikrotubul (tersusun dari tubulin) dan mikrofilamen (tersusun dari aktiF.
Sebagian besar organisme eukariot bersifat multiseluler dengan kelompok-kelompok sel yang mengalami diferensiasi selama perkembangan individu. Peristiwa ini terjadi karena pembelahan mitosis akan menghasilkan sejumlah sel dengan perubahan pola ekspresi gen sehingga mempunyai fungsi yang berbeda dengan sel asalnya. Dengan demikian, kandungan DNA pada sel-sel yang mengalami diferensiasi sebenarnya hampir selalu sama, tetapi gen-gen yang diekspresikan berbeda antara satu dan lainnya.
Diferensiasi diatur oleh gen-gen pengatur perkembangan. Mutasi yang terjadi pada gen-gen ini dapat mengakibatkan abnormalitas fenotipe individu, misalnya tumbuhnya kaki di tempat yang seharusnya digunakan untuk antena pada lalat Drosophila. Namun, justru dengan mempelajari mutasi pada gen-gen pengatur perkembangan, kita dapat memahami berlangsungnya proses perkembangan embrionik.
Pada organisme multiseluler koordinasi aktivitas sel di antara berbagai jaringan dan organ diatur oleh adanya komunikasi di antara sel-sel tersebut. Hal ini melibatkan molekul-molekul sinyal seperti neurotransmiter, hormon, dan faktor pertumbuhan yang disekresikan oleh suatu jaringan dan diteruskan kepada jaringan lainnya melalui reseptor yang terdapat pada permukaan sel.
ORGANEL SUBSELULER
Pada eukariot terdapat sejumlah organel subseluler seperti nukleus, mitokondria, kloroplas, retikulum endoplasmik, dan mikrobodi. Masing-masing akan kita bicarakan sepintas berikut ini.
Nukleus mengandung sekumpulan DNA seluler yang dikemas dalam beberapa kromosom. Di dalam nukleus terjadi transkripsi DNA menjadi RNA dan prosesing RNA. Selain DNA, di dalam nukleus juga terdapat nukleolus yang merupakan tempat berlangsungnya sintesis rRNA dan perakitan ribosom secara parsial.
Mitokondria merupakan tempat berlangsungnya respirasi seluler, yang melibatkan oksidasi nutrien menjadi CO2 dan air dengan membebaskan molekul ATP. Secara evolusi organel ini berasal dari simbion-simbion prokariotik yang tetap mempertahankan beberapa DNA, RNA, dan mesin sintesis proteinnya. Meskipun demikian, sebagian besar proteinnya disandi oleh DNA di dalam nukleus. Sementara itu, kloroplas merupakan tempat berlangsungnya proses fotosintesis pada tumbuhan  dan alga. Pada dasarnya kloroplas memiliki struktur yang menyerupai mitokondria dengan sistem membran tilakoid yang berisi klorofil. Seperti halnya mitokondria, kloroplas juga mempunyai DNA sendiri sehingga kedua organel ini sering dinamakan organel otonom.
Retikulum endoplasmik merupakan sistem membran sitoplasmik yang meluas dan menyambung dengan membran nukleus. Ada dua macam retikulum endoplasmik, yaitu retikulum endoplasmik halus yang membawa banyak enzim untuk reaksi biosintesis lemak dan metabolisme xenobiotik dan retikulum endoplasmik kasar yang membawa sejumlah ribosom untuk sintesis protein membran. Protein-protein ini diangkut melalui vesikula transpor menuju kompleks Golgi untuk prosesing lebih lanjut dan pemilahan sesuai dengan tujuan akhirnya masing-masing.
Mikrobodi terdiri atas lisosom, peroksisom, dan glioksisom. Lisosom berisi enzim-enzim hidrolitik yang dapat memecah karbohidrat, lemak, protein, dan asam nukleat. Organel ini bekerja sebagai pusat pendaurulangan makromolekul yang berasal dari luar sel atau organel-organel lain yang rusak. Sementara itu, peroksisom berisi enzim-enzim yang dapat mendegradasi hidrogen peroksida dan radikal bebas yang sangat reaktif. Glioksisom adalah peroksisom pada tumbuhan yang mengalami spesialisasi menjadi tempat berlangsungnya reaksi daur glioksilat.

MAKROMOLEKUL
Secara garis besar makromolekul hayati meliputi polisakarida, lemak, protein, dan asam nukleat. Selain itu, terdapat pula makromolekul kompleks, yang merupakan gabungan dua atau lebih di antara makromolekul tersebut.
POLISAKARIDA
Polisakarida merupakan polimer beberapa gula sederhana yang satu sama lain secara kovalen dihubungkan melalui ikatan glikosidik. Makromolekul ini terutama berfungsi sebagai cadangan makanan dan materi struktural.
Selulosa dan pati (amilum) sangat banyak dijumpai pada tumbuhan. Kedua-duanya adalah polimer glukosa, tetapi berbeda macam ikatan glikosidiknya. Pada selulosa monomer-monomer glukosa satu sama lain dihubungkan secara linier oleh ikatan 1,4 b glikosidik, sedangkan pada amilum ada dua macam ikatan glikosidik karena amilum mempunyai dua komponen, yaitu a-amilosa dan amilopektin. Monomer-monomer glukosa pada a-amilosa dihubungkan oleh ikatan 1,4 a glikosidik, sedangkan pada amilopektin, yang merupakan rantai cabang amilum, ikatannya adalah 1,6 a glikosidik.
Pada tumbuhan selulosa merupakan komponen utama penyusun struktur dinding sel.  Sekitar 40 rantai molekul selulosa tersusun paralel membentuk lembaran-lembaran horizontal yang dihubungkan oleh ikatan hidrogen sehingga menghasilkan serabut-serabut tak larut yang sangat kuat.  Sementara itu, amilum berguna sebagai cadangan makanan yang dapat dijumpai dalam bentuk butiran-butiran besar di dalam sel. Adanya dua macam ikatan glikosidik pada amilum menjadikan molekul ini tidak dapat dikemas dengan konformasi yang kompak. Oleh karena itu, amilum mudah larut di dalam air.
Fungi dan beberapa jaringan hewan menyimpan cadangan makanan glukosa dalam bentuk glikogen, yang mempunyai ikatan glikosidik seperti pada amilopektin. Polisakarida lainnya, kitin merupakan komponen utama penyusun dinding sel fungi dan eksoskeleton pada serangga dan Crustacea. Kitin mempunyai struktur molekul menyerupai selulosa, hanya saja monomernya berupa N-asetilglukosamin. Mukopolisakarida (glikosaminoglikan) membentuk larutan seperti gel yang di dalamnya terdapat protein-protein serabut pada jaringan ikat.
弐܀Penentuan struktur polisakarida berukuran besar sangatlah rumit karena ukuran dan komposisinya sangat bervariasi. Selain itu, berbeda dengan protein dan asam nukleat, makromolekul ini tidak dapat dipelajari secara genetik.

0 komentar:

Posting Komentar